本文展示了一种新的方法,可以使用语义分段特征提高面部识别姿势不变。拟议的SEG-DISTILD-ID网络共同学习识别和语义分割任务,然后将分割任务“蒸馏”(Mobilenet编码器)。在强调头置变化的公开数据集中,针对三个最先进的编码器进行了基准测试。实验评估表明,SEG-DISTILD-ID网络显示出显着的鲁棒性优势,相比之下,RESNET-101的测试准确性达到99.9%,VGG-19的96.1%,IntectionV3的vgg-19和96.3%。这是使用顶部编码器推理参数的大约十分之一来实现的。这些结果表明,蒸馏的语义分割特征可以有效地解决面部识别姿势不变。
translated by 谷歌翻译
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
translated by 谷歌翻译
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
translated by 谷歌翻译
This paper revisits a fundamental problem in statistical inference from a non-asymptotic theoretical viewpoint $\unicode{x2013}$ the construction of confidence sets. We establish a finite-sample bound for the estimator, characterizing its asymptotic behavior in a non-asymptotic fashion. An important feature of our bound is that its dimension dependency is captured by the effective dimension $\unicode{x2013}$ the trace of the limiting sandwich covariance $\unicode{x2013}$ which can be much smaller than the parameter dimension in some regimes. We then illustrate how the bound can be used to obtain a confidence set whose shape is adapted to the optimization landscape induced by the loss function. Unlike previous works that rely heavily on the strong convexity of the loss function, we only assume the Hessian is lower bounded at optimum and allow it to gradually becomes degenerate. This property is formalized by the notion of generalized self-concordance which originated from convex optimization. Moreover, we demonstrate how the effective dimension can be estimated from data and characterize its estimation accuracy. We apply our results to maximum likelihood estimation with generalized linear models, score matching with exponential families, and hypothesis testing with Rao's score test.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
Event-based vision has been rapidly growing in recent years justified by the unique characteristics it presents such as its high temporal resolutions (~1us), high dynamic range (>120dB), and output latency of only a few microseconds. This work further explores a hybrid, multi-modal, approach for object detection and tracking that leverages state-of-the-art frame-based detectors complemented by hand-crafted event-based methods to improve the overall tracking performance with minimal computational overhead. The methods presented include event-based bounding box (BB) refinement that improves the precision of the resulting BBs, as well as a continuous event-based object detection method, to recover missed detections and generate inter-frame detections that enable a high-temporal-resolution tracking output. The advantages of these methods are quantitatively verified by an ablation study using the higher order tracking accuracy (HOTA) metric. Results show significant performance gains resembled by an improvement in the HOTA from 56.6%, using only frames, to 64.1% and 64.9%, for the event and edge-based mask configurations combined with the two methods proposed, at the baseline framerate of 24Hz. Likewise, incorporating these methods with the same configurations has improved HOTA from 52.5% to 63.1%, and from 51.3% to 60.2% at the high-temporal-resolution tracking rate of 384Hz. Finally, a validation experiment is conducted to analyze the real-world single-object tracking performance using high-speed LiDAR. Empirical evidence shows that our approaches provide significant advantages compared to using frame-based object detectors at the baseline framerate of 24Hz and higher tracking rates of up to 500Hz.
translated by 谷歌翻译
Nowadays, the current neural network models of dialogue generation(chatbots) show great promise for generating answers for chatty agents. But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes. Modelling a dialogue's future direction is critical for generating coherent, interesting dialogues, a need that has led traditional NLP dialogue models that rely on reinforcement learning. In this article, we explain how to combine these objectives by using deep reinforcement learning to predict future rewards in chatbot dialogue. The model simulates conversations between two virtual agents, with policy gradient methods used to reward sequences that exhibit three useful conversational characteristics: the flow of informality, coherence, and simplicity of response (related to forward-looking function). We assess our model based on its diversity, length, and complexity with regard to humans. In dialogue simulation, evaluations demonstrated that the proposed model generates more interactive responses and encourages a more sustained successful conversation. This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
translated by 谷歌翻译
Three-dimensional (3D) technologies have been developing rapidly recent years, and have influenced industrial, medical, cultural, and many other fields. In this paper, we introduce an automatic 3D human head scanning-printing system, which provides a complete pipeline to scan, reconstruct, select, and finally print out physical 3D human heads. To enhance the accuracy of our system, we developed a consumer-grade composite sensor (including a gyroscope, an accelerometer, a digital compass, and a Kinect v2 depth sensor) as our sensing device. This sensing device is then mounted on a robot, which automatically rotates around the human subject with approximate 1-meter radius, to capture the full-view information. The data streams are further processed and fused into a 3D model of the subject using a tablet located on the robot. In addition, an automatic selection method, based on our specific system configurations, is proposed to select the head portion. We evaluated the accuracy of the proposed system by comparing our generated 3D head models, from both standard human head model and real human subjects, with the ones reconstructed from FastSCAN and Cyberware commercial laser scanning systems through computing and visualizing Hausdorff distances. Computational cost is also provided to further assess our proposed system.
translated by 谷歌翻译
We propose a 6D RGB-D odometry approach that finds the relative camera pose between consecutive RGB-D frames by keypoint extraction and feature matching both on the RGB and depth image planes. Furthermore, we feed the estimated pose to the highly accurate KinectFusion algorithm, which uses a fast ICP (Iterative Closest Point) to fine-tune the frame-to-frame relative pose and fuse the depth data into a global implicit surface. We evaluate our method on a publicly available RGB-D SLAM benchmark dataset by Sturm et al. The experimental results show that our proposed reconstruction method solely based on visual odometry and KinectFusion outperforms the state-of-the-art RGB-D SLAM system accuracy. Moreover, our algorithm outputs a ready-to-use polygon mesh (highly suitable for creating 3D virtual worlds) without any postprocessing steps.
translated by 谷歌翻译
In this paper, a Kinect-based distributed and real-time motion capture system is developed. A trigonometric method is applied to calculate the relative position of Kinect v2 sensors with a calibration wand and register the sensors' positions automatically. By combining results from multiple sensors with a nonlinear least square method, the accuracy of the motion capture is optimized. Moreover, to exclude inaccurate results from sensors, a computational geometry is applied in the occlusion approach, which discovers occluded joint data. The synchronization approach is based on an NTP protocol that synchronizes the time between the clocks of a server and clients dynamically, ensuring that the proposed system is a real-time system. Experiments for validating the proposed system are conducted from the perspective of calibration, occlusion, accuracy, and efficiency. Furthermore, to demonstrate the practical performance of our system, a comparison of previously developed motion capture systems (the linear trilateration approach and the geometric trilateration approach) with the benchmark OptiTrack system is conducted, therein showing that the accuracy of our proposed system is $38.3\%$ and 24.1% better than the two aforementioned trilateration systems, respectively.
translated by 谷歌翻译